Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

نویسندگان

  • Saranga Naganathan
  • Sarmistha Ray-Saha
  • Minyoung Park
  • He Tian
  • Thomas P. Sakmar
  • Thomas Huber
چکیده

We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide-alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the role of the cation-pi interaction in the binding sites of GPCRs using unnatural amino acids.

We describe a general application of the nonsense suppression methodology for unnatural amino acid incorporation to probe drug-receptor interactions in functional G protein-coupled receptors (GPCRs), evaluating the binding sites of both the M2 muscarinic acetylcholine receptor and the D2 dopamine receptor. Receptors were expressed in Xenopus oocytes, and activation of a G protein-coupled, inwar...

متن کامل

High-precision FRET analysis of the G-protein coupled receptor TGR5 in live cells

Background TGR5 is a widely expressed and highly conserved G protein coupled receptor. Its activity and functionality is commonly modulated by bile acids, especially by lithocholic acid. As true for all ligand activated G protein coupled receptors a G protein subunit is released from TGR5 after ligand binding and initiates a signaling cascade resulting in a cell type specific response. Current ...

متن کامل

Genetically encoded photo-cross-linkers map the binding site of an allosteric drug on a G protein-coupled receptor.

G protein-coupled receptors (GPCRs) are dynamic membrane proteins that bind extracellular molecules to transduce signals. Although GPCRs represent the largest class of therapeutic targets, only a small percentage of their ligand-binding sites are precisely defined. Here we describe the novel application of targeted photo-cross-linking using unnatural amino acids to obtain structural information...

متن کامل

Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR

Specific arrestin conformations are coupled to distinct downstream effectors, which underlie the functions of many G-protein-coupled receptors (GPCRs). Here, using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ((19)F-NMR) spectroscopy, we demonstrate that distinct receptor phospho-barcodes are translated to specific β-arrestin-1 conformations and direct selective...

متن کامل

Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1

The efficient, site-specific introduction of unnatural amino acids into proteins in mammalian cells is an outstanding challenge in realizing the potential of genetic code expansion approaches. Addressing this challenge will allow the synthesis of modified recombinant proteins and augment emerging strategies that introduce new chemical functionalities into proteins to control and image their fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2015